Implementasi Convolutional Neural Network (CNN) untuk Klasifikasi Citra Batik Nusantara
DOI:
https://doi.org/10.55606/jutiti.v5i1.5421Keywords:
Convolutional Neural Networks, VGG-16, Batik Mega Mendung, Image Classification, Deep LearningAbstract
Batik is a cultural heritage of the nation, with each batik having a unique and diverse pattern motif. The batik culture is very strong in Indonesia, so batik can be found in all regions of the archipelago. Each batik has its own characteristics and traits to distinguish itself in each area. However, many people find it difficult to differentiate the types of batik motif patterns, one of which is the Nusantara Megamendung batik. Therefore, this research aims to introduce the classification process of Nusantara batik motif patterns using one of the Deep Learning methods, namely Convolutional Neural Network (CNN), to differentiate the types of batik motif patterns in each region. The dataset is taken from the numeric representations of Red, Green, and Blue (RGB) values of each pixel, which are used as model learning features to study color patterns and textures. From the results of the experiments conducted, the batik image classification using the CNN method has a high level of accuracy The batik classification model achieved an accuracy of 85%, demonstrating a fairly good ability to identify batik images, one of which is the Mega Mendung batik. The Mega Mendung and Keraton classes showed perfect performance, with precision, recall, and F1-score close to 1.00. However, the Bali class was the main weak point, with a recall of only 60%, indicating that 40% of Bali Batik samples were misclassified, primarily as Keraton.
Downloads
References
D. Q. A’yun, M. Y. Tanzil, and F. R. Julia, “Pengaplikasian elemen desain pada motif batik mega mendung,” Semin. Nas. Envisi Ind. Kreat., pp. 118–127, 2020.
M. Malika and E. Widodo, “Implementasi Deep Learning Untuk Klasifikasi Gambar Menggunakan Convolutional Neural Network (Cnn) Pada Batik Sasambo,” Pattimura Proceeding Conf. Sci. Technol., pp. 335–340, 2022, doi: 10.30598/pattimurasci.2021.knmxx.335-340.
M. H. V. Sinaga, M. Albirra, and M. F. Sidiq, “Klasifikasi Gambar Pemandangan dengan Kecerdasan Buatan Berbasis CNN,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 8, no. 2, pp. 412–417, 2024, doi: 10.35870/jtik.v8i2.1424.
I. Gilang Perwati, N. Suarna, and T. Suprapti, “Analisis Klasifikasi Gambar Bunga Lily Menggunakan Metode Convolutional Neural Network (Cnn) Dalam Pengolahan Citra,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 2908–2915, 2024, doi: 10.36040/jati.v8i3.9193.
R. H. Alfikri, M. S. Utomo, H. Februariyanti, and E. Nurwahyudi, “Pembangunan Aplikasi Penerjemah Bahasa Isyarat Dengan Metode Cnn Berbasis Android,” J. Teknoinfo, vol. 16, no. 2, p. 183, 2022, doi: 10.33365/jti.v16i2.1752.
A. Zalvadila, “Klasifikasi Penyakit Tanaman Bawang Merah Menggunakan Metode SVM dan CNN,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 255–260, 2023, doi: 10.30591/jpit.v8i3.5341.
H. Herdianto and D. Nasution, “Implementasi Metode Cnn Untuk Klasifikasi Objek,” METHOMIKA J. Manaj. Inform. dan Komputerisasi Akunt., vol. 7, no. 1, pp. 54–60, 2023, doi: 10.46880/jmika.vol7no1.pp54-60.
U. S. Rahmadhani and N. L. Marpaung, “Klasifikasi Jamur Berdasarkan Genus Dengan Menggunakan Metode CNN,” J. Inform. J. Pengemb. IT, vol. 8, no. 2, pp. 169–173, 2023, doi: 10.30591/jpit.v8i2.5229.
Rizky Prabowo, Azzah Roudhoh, and Afifah, “Klasifikasi Image Tumbuhan Obat Sirih dan Binahong Menggunakan Metode Convolutional Neural Network (CNN),” J. Komputasi, vol. 10, no. 2, pp. 48–58, 2022.
Verdy and Ery Hartati, “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network Model Resnet-50,” J. Rekayasa Sist. Inf. dan Teknol., vol. 1, no. 3, pp. 199–206, 2024, doi: 10.59407/jrsit.v1i3.529.
R. Soekarta, N. Nurdjan, and A. Syah, “Klasifikasi Penyakit Tanaman Tomat Menggunakan Metode Convolutional Neural Network (CNN),” Insect (Informatics Secur. J. Tek. Inform., vol. 8, no. 2, pp. 143–151, 2023, doi: 10.33506/insect.v8i2.2356.
R. Soekarta et al., “IMPLEMENTASI DEEP LEARNING UNTUK DETEKSI JENIS OBAT proses kehidupan dan merupakan senyawa tubuh ( Prabowo , 2021 ). Saat ini berbagai jenis dibedakan beberapa bentuk sediaan obat . Dalam lingkungan farmasi yang untuk automatisasi dalam pengelolaan obat s,” vol. 7, no. 4, pp. 455–464, 2023.
M. Khoiruddin, A. Junaidi, and W. A. Saputra, “Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network,” J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 2, no. 1, pp. 37–45, 2022, doi: 10.20895/dinda.v2i1.341.
Anissa Ollivia Cahya Pratiwi, “Klasifikasi Jenis Anggur Berdasarkan Bentuk Daun Menggunakan Convolutional Neural Network Dan K-Nearest Neighbor,” J. Ilm. Tek. Inform. dan Komun., vol. 3, no. 2, pp. 201–224, 2023, doi: 10.55606/juitik.v3i2.535.
M. I. Syahputra and A. T. Wibowo, “Klasifikasi Genus Tanaman Anggrek berdasarkan Citra Kuntum Bunga Menggunakan Metode Convolutional Neural Network (CNN),” e-Proceeding Eng., vol. 7, no. 2, pp. 8015–8023, 2020, [Online]. Available: https://www.programmersought.com/article/3724355693/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Teknik Informatika dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




