Deteksi Penyakit Daun Terong Menggunakan MobileNetV2
DOI:
https://doi.org/10.55606/jutiti.v5i2.5433Keywords:
Eggplant-Leaf-Disease, MobileNetV2, Image-Classification, Smart-FarmingAbstract
Eggplant is a horticultural crop that is highly dependent on the health of its leaves to support growth and productivity. Leaf diseases can cause a significant reduction in crop yield if not detected early. This study aims to develop a leaf classification model for eggplant using the MobileNetV2 architecture to automatically detect leaf conditions. The model was trained using a public dataset of eggplant leaf images, with an 80% training and 20% validation data split. During the twenty-epoch training process, the model achieved a validation accuracy of 93%. The final model is stored in a lightweight format. The results of this study indicate that this approach is effective for detecting diseases in eggplant leaves and has the potential to support the implementation of responsive smart agriculture in the field.
Downloads
References
Adhinata, F. D., Fitriana, F. D., Wijayanto, G. F., & Putra, A. (2021). Corn disease classification using transfer learning and convolutional neural network. [Nama jurnal tidak dicantumkan], 9(2). (Perlu ditambahkan nama jurnal)
Akay, M., Du, Y., Sershen, C. L., Wu, M., Chen, T. Y., Assassi, S., Mohan, C., & Akay, Y. M. (2021). Deep learning classification of systemic sclerosis skin using the MobileNetV2 model. IEEE Open Journal of Engineering in Medicine and Biology, 2, 104–110. https://doi.org/10.1109/OJEMB.2021.3066097
Albattah, W., Nawaz, M., Javed, A., Masood, M., & Albahli, S. (2022). A novel deep learning method for detection and classification of plant diseases. Complex and Intelligent Systems, 8(1), 507–524. https://doi.org/10.1007/s40747-021-00536-1
Anggraini Puspita Sari, Haromainy, M. M. A., & Ryan Purnomo. (2024). Implementasi metode Rapid Application Development pada aplikasi sistem informasi monitoring santri berbasis website. Decode: Jurnal Pendidikan Teknologi Informasi, 4(1), 316–325. https://doi.org/10.51454/decode.v4i1.348
Aufar, Y., & Kaloka, T. P. (2022). Robusta coffee leaf diseases detection based on MobileNetV2 model. International Journal of Electrical and Computer Engineering, 12(6), 6675–6683. https://doi.org/10.11591/ijece.v12i6.pp6675-6683
Bi, C., Xu, S., Hu, N., Zhang, S., Zhu, Z., & Yu, H. (2023). Identification method of corn leaf disease based on improved MobileNetV3 model. Agronomy, 13(2). https://doi.org/10.3390/agronomy13020300
Chen, J., Zhang, D., & Nanehkaran, Y. A. (2020). Identifying plant diseases using deep transfer learning and enhanced lightweight network. Multimedia Tools and Applications, 79(41–42), 31497–31515. https://doi.org/10.1007/s11042-020-09669-w
Detection of plant diseases using convolutional neural network architectures. (2021). International Journal of Intelligent Communication, Computing and Networks. https://doi.org/10.51735/ijiccn/001/19
Dharmaputra, A., Cahyanti, M., Septian, M. R. D., & Swedia, E. R. (2021). Aplikasi face mask detection menggunakan neural network MobileNetV2 berbasis Android. Sebatik, 25(2), 382–389. https://doi.org/10.46984/sebatik.v25i2.1503
Dwianto, S., Naufal Mubarok, F., Satriatama, D., & Agustin, T. (2024). Penerapan Convolutional Neural Network (CNN) dalam deteksi penyakit pada tanaman terong. Seminar Nasional AMIKOM Surakarta (SEMNASA).
Hamidson, H., Adrian, R., Umayah, A., Gunawan, B., Studi, P., Tanaman, P., Hama, J., & Tumbuhan, P. (2022, Oktober 27). Eggplant (Solanum melongena L.) in Tanjung Pering Village, Ogan Ilir Regency, South Sumatera. Palembang. (Judul tidak sesuai gaya APA; perlu revisi lebih lanjut dan nama jurnal/conferencenya belum jelas)
Hardianto, M. R., & Sukmana, R. N. (2023). Sistem pendukung keputusan diagnosa penyakit pada tumbuhan terong ungu menggunakan metode teorema Bayes. Digital Transformation Technology, 3(2), 505–514. https://doi.org/10.47709/digitech.v3i2.2882
Ibnul Rasidi, A., Pasaribu, Y. A. H., Ziqri, A., & Adhinata, F. D. (2022). Klasifikasi sampah organik dan non-organik menggunakan Convolutional Neural Network. Jurnal Teknik Informatika dan Sistem Informasi, 8(1). https://doi.org/10.28932/jutisi.v8i1.4314
Iswantoro, D., & Handayani, D. (2022). Klasifikasi penyakit tanaman jagung menggunakan metode Convolutional Neural Network (CNN). Jurnal Ilmiah Universitas Batanghari Jambi, 22(2), 900. https://doi.org/10.33087/jiubj.v22i2.2065
Manjula, S., & R, V. K. (2021). Real world face mask detection using MobileNetV2 and Raspberry Pi. International Journal of Engineering Research and Applications, 11, 26–32. https://doi.org/10.9790/9622-1110012632
Rozaqi, A. J., Sunyoto, A., & Arief, R. (2021). Deteksi penyakit pada daun kentang menggunakan pengolahan citra dengan metode Convolutional Neural Network.
Sandhya, S., Balasundaram, A., & Sivaraman, A. (2022). Deep learning and computer vision based model for detection of diseased mango leaves. International Journal on Recent and Innovation Trends in Computing and Communication, 10(6), 70–79. https://doi.org/10.17762/ijritcc.v10i6.5555
Sintya, M., & Putri, E. (2024). Identifikasi hama dan penyakit pada tanaman jati dengan metode deep learning YOLOv8. 7(6). (Perlu ditambahkan nama jurnal)
Wang, B., Zhang, C., Li, Y., Cao, C., Huang, D., & Gong, Y. (2023). An ultra-lightweight efficient network for image-based plant disease and pest infection detection. Precision Agriculture, 24(5), 1836–1861. https://doi.org/10.1007/s11119-023-10020-0
Wangsa Kencana, N., & Umar, R. (2024). Implementasi transfer learning untuk klasifikasi jenis ras ayam menggunakan arsitektur MobileNetV2. JIP (Jurnal Informatika Polinema), 7(6).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Teknik Informatika dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




