Penerapan Fuzzy C-Means dalam Sistem Pendukung Keputusan untuk Penentuan Penerima Beasiswa Program Indonesia Pintar (PIP)

Authors

  • Saparuddin Saparuddin Universitas Islam Negeri Alauddin Makassar
  • Faisal Akib Universitas Islam Negeri Alauddin Makassar
  • Nahrun Hartono Universitas Islam Negeri Alauddin Makassar

DOI:

https://doi.org/10.55606/jutiti.v5i2.5581

Keywords:

Fuzzy C-Means, Decision Support System, Indonesia Smart Program, Clustering

Abstract

The process of selecting students for educational assistance in schools is still frequently performed manually by comparing individual student data. This approach is time-consuming and vulnerable to subjectivity and human error. To address this issue, this study developed a Decision Support System (DSS) using the Fuzzy C-Means (FCM) algorithm to cluster students based on their eligibility level for aid. FCM is chosen due to its capability to categorize data into multiple clusters based on data similarity. Seven evaluation criteria were employed: father's income, mother's income, father's education, mother's education, birth order, number of siblings, and type of transportation to school. The dataset consists of student information that was preprocessed and weighted based on a predefined scale. Clustering was conducted with a maximum iteration of 100 and an error tolerance of 0.00001. The results indicate that FCM successfully grouped the students into two clusters, with 487 students classified as eligible for assistance and 202 students as ineligible. To validate the clustering, the results were compared with the official Dapodik dataset, which demonstrated a high degree of consistency. Therefore, the implementation of FCM in this decision support system has proven to be effective in producing objective, accurate, and efficient classifications.

Downloads

Download data is not yet available.

References

Dawis, A. M., Himawan, I. S., Meidelfi, D., Ikhram, F., Intan, I., Harun, R., Haris, M. S., Wahyuddin, S., Yuniar, E., and Purnomo, R., Artificial Intelligence: Konsep Dasar dan Kajian Praktis, TOHAR MEDIA, 2022.

Edrial, P., Purtama, A. R., and Sujastiawan, A., “Evaluasi Kebijakan Program Indonesia Pintar (PIP) di SMA Negeri 1 Utan Tahun 2019–2020,” Jurnal Kapita Selekta Administrasi Publik, vol. 3, no. 1, pp. 109–116, 2022. [Online]. Available: http://e-journallppmunsa.ac.id/index.php/ksap

Ibnu Daqiqil, Machine Learning: Teori, Studi Kasus dan Implementasi Menggunakan Python, vol. 1, Unri Press, 2021.

Kalua, A. L., Mantiri, R., Rumondor, C., and Mogogibung, E., “Sistem Informasi Pendaftaran Beasiswa dan Jadwal Legalisir Berbasis Website Responsive,” Journal of Information Technology, Software Engineering and Computer Science (ITSECS), vol. 2, no. 2, pp. 58–74, 2024. doi: 10.58602/itsecs.v2i2.108

Lutfiani, N., Harahap, P., Aini, Q., Dimas, A., Ahmad, A. R., and Rahardja, U., “Inovasi Manajemen Proyek I-Learning Menggunakan Metode Agile Scrumban,” Jurnal Nasional Informatika dan Teknologi Jaringan, vol. 5, no. 1, pp. 96–101, 2020. doi: 10.30743/infotekjar.v5i1.2848

Mujibulloh, Martanto, and Hayati, U., “Clustering Produk Ekspor Indonesia Berdasarkan Tingkat Permintaan Menggunakan Metode K-Means Tahun 2020–2022,” Jurnal Mahasiswa Teknik Informatika, vol. 7, no. 6, pp. 3580–3586, 2023.

Nur Aisah, S., Nurcahyani, A., and Rini, C. D., “Implementasi Fuzzy C-Means Clustering (FCM) pada Pemetaan Daerah Potensi Transmigrasi di Jawa Timur,” Jurnal Teknik Informatika, vol. 7, no. 1, pp. 33–40, 2022.

Paembonan, S., Abduh, H., and Kunci, K., “Penerapan Metode Silhouette Coeficient Untuk Evaluasi Clustering Obat,” Jurnal Ilmiah Ilmu-Ilmu Teknik, vol. 6, no. 2, pp. 48–54, 2021. [Online]. Available: https://ojs.unanda.ac.id/index.php/jiit/index

Pasaribu, A. F., Surahman, A., Priandika, A. T., Sintaro, S., and Utami, Y. T., “Sistem Pendukung Keputusan Seleksi Penerimaan Guru Menggunakan SAW,” Journal of Artificial Intelligence and Technology Information (JAITI), vol. 1, no. 1, pp. 13–19, 2023. doi: 10.58602/jaiti.v1i1.21

Pebdika, A., Herdiana, R., and Solihudin, D., “Klasifikasi Menggunakan Metode Naive Bayes untuk Menentukan Calon Penerima PIP,” Jurnal Mahasiswa Teknik Informatika, vol. 7, no. 1, pp. 452–458, 2023.

Prehanto, D. R., Buku Ajar Model Sistem Pendukung Keputusan dengan AHP dan IPMS, Scopindo Media Pustaka, 2020.

Putra, I. N. T. A., Sudipa, I. G. I., Jumariana, I. P. C., and Jun, Y., “Penerapan Algoritma Copeland Score sebagai Penunjang Penerimaan Beasiswa KIP di Kampus Institut Bisnis dan Teknologi Indonesia,” Journal of Technology and Informatics (JoTI), vol. 4, no. 2, pp. 57–62, 2023. doi: 10.37802/joti.v4i2.310

Rizaldi, M. F., Akrom, A. A., Imron, M. A., Hanif, M. F., and Achmad, Z. A., “Pengenalan Website Sebagai Pengembangan Profil Pondok Pesantren Maqis Al-Hamidy 4,” Jurnal Pengabdian Kepada Masyarakat, vol. 3, no. 3, pp. 53–61, 2023. [Online]. Available: https://jurnalfkip.samawa-university.ac.id/karya_jpm/index

Rochman, E. M. S., Miswanto, and Suprajitno, H., “Comparison of Clustering in Tuberculosis Using Fuzzy C-Means and K-Means Methods,” SCIK Publishing Corporation, no. 41, pp. 1–20, 2022. doi: 10.28919/cmbn/7335

Wardani, P. A., and Widianto, E. P., “Pengembangan Sistem Pendukung Keputusan Pemilihan Beasiswa Berbasis Web dengan Metode Fuzzy Tahani,” Jurnal Teknologi dan Sistem Informasi, vol. 3, no. 1, pp. 12–19, 2022.

Yusuf, M., and Iskandar, A., “Evaluasi Efektivitas Algoritma Clustering untuk Penentuan Wilayah Prioritas Bantuan Pendidikan,” Jurnal Teknologi dan Informatika, vol. 5, no. 2, pp. 100–108, 2023.

Downloads

Published

2025-07-15

How to Cite

Saparuddin Saparuddin, Faisal Akib, & Nahrun Hartono. (2025). Penerapan Fuzzy C-Means dalam Sistem Pendukung Keputusan untuk Penentuan Penerima Beasiswa Program Indonesia Pintar (PIP). Jurnal Teknik Informatika Dan Teknologi Informasi, 5(2), 365–385. https://doi.org/10.55606/jutiti.v5i2.5581

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.