Analisis Sentimen Terhadap Opini Publik Tentang Kebijakan Regulasi Kripto Di Indonesia Menggunakan Metode Regresi Logistik

Authors

  • Nazka yasidi Universitas Indo Global Mandiri
  • Rendra Gustriansyah Universitas Indo Global Mandiri
  • Lastri Widya Astuti Universitas Indo Global Mandiri

DOI:

https://doi.org/10.55606/jutiti.v5i2.5733

Keywords:

Sentiment Analysis, Cryptocurrency, Regulation, Logistic Regression, Social Media

Abstract

This study investigates public sentiment toward cryptocurrency regulation policies in Indonesia by employing a logistic regression approach on social media data. A total of 300 Indonesian-language tweets were collected from platform X between January 2022 and April 2025 through a web scraping method using targeted keywords related to cryptocurrency payment regulations. Data preprocessing included text cleaning, case folding, stemming with the Sastrawi library, stopword removal, and tokenization, followed by feature extraction using TF-IDF. Sentiment labels were manually assigned in collaboration with legal experts to ensure classification accuracy. The logistic regression model achieved strong predictive performance, with 91.67% accuracy on the test set and stable results across K-Fold Cross Validation, yielding an average accuracy of 92–93%. The sentiment analysis revealed that the majority of public opinion expressed positive sentiment (85%), while negative sentiment represented only 15%. Positive sentiment was primarily associated with terms such as “protect,” “regulate,” “benefit,” and “legality,” highlighting public support for regulatory measures that enhance investor protection and provide legal certainty. Conversely, negative sentiment featured terms including “forbidden,” “restrict,” and “obstruct,” which reflected concerns regarding regulatory barriers and religious considerations surrounding cryptocurrency usage. The findings demonstrate that Indonesian society generally perceives cryptocurrency regulation as a constructive initiative toward building a secure and trustworthy digital asset ecosystem. Furthermore, the empirical evidence contributes to the growing literature on public perception of financial technology regulations in developing countries. For policymakers, the results emphasize the importance of transparent communication and balanced regulatory frameworks to maintain public trust while addressing potential risks. Overall, this research provides valuable insights into how sentiment analysis can inform the design of more effective regulatory strategies in the evolving landscape of digital finance.

Downloads

Download data is not yet available.

References

Agung, N. (2025). Dasar pemrograman Python. https://dasarpemrogramanpython.novalagung.com

Aritonang, D. E., & Hariwibowo, I. N. (2024). Fenomena "FoMO" investasi cryptocurrency: Analisis sentimen. Jurnal …, 4(2), 1-12. https://doi.org/10.24002/konstelasi.v4i2.10073

Astuti, L. W., Saluza, I., Faradilla, F., & Alie, M. F. (2021). Optimalisasi klasifikasi kanker payudara menggunakan forward selection pada Naive Bayes. Jurnal Ilmiah Informatika Global, 11(2). https://doi.org/10.36982/jiig.v11i2.1235

Crypto., A. (2024). Crypto smart money: A deep understanding on how to trade like the big players. Yogyakarta.

Gustriansyah, R., Alie, J., Sanmorino, A., Heriansyah, R., & Megat Mohamed Noor, M. N. (2022). Machine learning for clustering regencies-cities based on inflation and poverty rates in Indonesia. Indonesian Journal of Information Systems, 5(1), 64-73. https://doi.org/10.24002/ijis.v5i1.5682

Gustriansyah, R., Suhandi, N., Puspasari, S., & Sanmorino, A. (2024). Machine learning method to predict the toddlers' nutritional status. Jurnal Infotel, 16(1), 32-43. https://doi.org/10.20895/infotel.v15i4.988

Gustriansyah, R., Suhandi, N., Puspasari, S., Sanmorino, A., & Sartika, D. (2023). Toddlers' nutritional status prediction using the multinomial logistics regression method. Journal of Computer Networks, Architecture and High Performance Computing, 6(1), 25-33. https://doi.org/10.47709/cnahpc.v6i1.3372

Harlan, J. (2020). Analisis regresi logistik. In Analisis regresi logistik (pp. 39-55). Depok: Gunadarma.

Mahadhika, N., & Purwanti, N. P. (2023). Perlindungan hukum terhadap konsumen dalam pembelian aset kripto melalui transaksi elektronik di Indonesia. Jurnal Kertha Desa, 11(6), 2781-2790. https://bappebti.go.id/resources/docs/artikel_2021_02_18_lne7p27t_id.pdf

Oktofa, M. A., & Hakim, A. A. (2023). Analisis dampak penggunaan kriptocurrency terhadap pertumbuhan perekonomian di Indonesia. Jurnal Dinamika Ekonomi Syariah, 10(1), 1-12. https://doi.org/10.53429/jdes.v10i1.398

Pameka, A., Heriansyah, R., & Astuti, L. W. (2024). Optimalisasi feature selection untuk mendeteksi penyakit diabetes mellitus menggunakan metode decision tree. JUPITER: Jurnal Penelitian …, 589-599.

Pokhrel, S. (2024). No title ΕΛΕΝΗ. Αγαη, 15(1), 37-48.

Purnama, W. W. (2022). Regulasi mata uang kripto di Indonesia: Pandangan regulator dan implikasi hukum bagi ekonomi masyarakat. Jurnal Penelitian Serambi Hukum, 15(2), 96-101. https://doi.org/10.59582/sh.v15i02.922

Purnamasari, D., Bayu, A., Desy, A., Wulandari, A. P. F., Reza, A., Safrila, M., Yanda, O. N., & Hidayati, U. (2023). Pengantar metode analisis sentimen. Gunadarma Penerbit.

Raharjo, B. (2021). Pembelajaran mesin (machine learning) pembelajaran mesin. Semarang: Yayasan Prima Agus Teknik. https://www.codepolitan.com/mengenal-teknologi-machine-learning-pembelajaran-mesin

Raharjo, B. (2022). Uang masa depan: Blockchain, Bitcoin, cryptocurrencies. Semarang: Yayasan Prima Agus Teknik.

Saputra, Z., Sartika, D., & Irfani, M. H. (2024). Prediksi calon mahasiswa penerima KIP pada Universitas Indo Global Mandiri menggunakan algoritma decision tree. Jurnal Rekayasa Teknik Informatika dan Informasi, 43(3), 231-240.

Tamardina, F. A., Yasin, H., & Ispriyanti, D. (2022). Analisis sentimen review aplikasi cryptocurrency menggunakan algoritma maximum entropy dengan metode pembobotan TF, TF-IDF dan Binary. Jurnal Gaussian, 11(1), 1-10. https://doi.org/10.14710/j.gauss.v11i1.34004

Thoyyibah, T., Kurniawan, F., & Taryo, T. (2024). Dasar-dasar machine learning pada Google Colabs. Purbalingga: Eureka Media Aksara. https://doi.org/10.1016/j.earlhumdev.2006.05.022 PMid:16854537

Whitaker, T., Beranger, B., & Sisson, S. A. (2021). Logistic regression models for aggregated data. Journal of Computational and Graphical Statistics, 30(4), 1049-1067. https://doi.org/10.1080/10618600.2021.1895816

Wildan, P. D. (2022). Analisis sentimen terhadap cryptocurrency pada media sosial Twitter menggunakan metode long short-term memory (LSTM). Jurnal …

Downloads

Published

2025-08-20

How to Cite

Nazka yasidi, Rendra Gustriansyah, & Lastri Widya Astuti. (2025). Analisis Sentimen Terhadap Opini Publik Tentang Kebijakan Regulasi Kripto Di Indonesia Menggunakan Metode Regresi Logistik. Jurnal Teknik Informatika Dan Teknologi Informasi, 5(2), 599–610. https://doi.org/10.55606/jutiti.v5i2.5733

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.