Analisis Sentimen Terhadap Opini Publik Tentang Kebijakan Regulasi Kripto Di Indonesia Menggunakan Metode Regresi Logistik
DOI:
https://doi.org/10.55606/jutiti.v5i2.5733Keywords:
Sentiment Analysis, Cryptocurrency, Regulation, Logistic Regression, Social MediaAbstract
This study investigates public sentiment toward cryptocurrency regulation policies in Indonesia by employing a logistic regression approach on social media data. A total of 300 Indonesian-language tweets were collected from platform X between January 2022 and April 2025 through a web scraping method using targeted keywords related to cryptocurrency payment regulations. Data preprocessing included text cleaning, case folding, stemming with the Sastrawi library, stopword removal, and tokenization, followed by feature extraction using TF-IDF. Sentiment labels were manually assigned in collaboration with legal experts to ensure classification accuracy. The logistic regression model achieved strong predictive performance, with 91.67% accuracy on the test set and stable results across K-Fold Cross Validation, yielding an average accuracy of 92–93%. The sentiment analysis revealed that the majority of public opinion expressed positive sentiment (85%), while negative sentiment represented only 15%. Positive sentiment was primarily associated with terms such as “protect,” “regulate,” “benefit,” and “legality,” highlighting public support for regulatory measures that enhance investor protection and provide legal certainty. Conversely, negative sentiment featured terms including “forbidden,” “restrict,” and “obstruct,” which reflected concerns regarding regulatory barriers and religious considerations surrounding cryptocurrency usage. The findings demonstrate that Indonesian society generally perceives cryptocurrency regulation as a constructive initiative toward building a secure and trustworthy digital asset ecosystem. Furthermore, the empirical evidence contributes to the growing literature on public perception of financial technology regulations in developing countries. For policymakers, the results emphasize the importance of transparent communication and balanced regulatory frameworks to maintain public trust while addressing potential risks. Overall, this research provides valuable insights into how sentiment analysis can inform the design of more effective regulatory strategies in the evolving landscape of digital finance.
Downloads
References
Agung, N. (2025). Dasar pemrograman Python. https://dasarpemrogramanpython.novalagung.com
Aritonang, D. E., & Hariwibowo, I. N. (2024). Fenomena "FoMO" investasi cryptocurrency: Analisis sentimen. Jurnal …, 4(2), 1-12. https://doi.org/10.24002/konstelasi.v4i2.10073
Astuti, L. W., Saluza, I., Faradilla, F., & Alie, M. F. (2021). Optimalisasi klasifikasi kanker payudara menggunakan forward selection pada Naive Bayes. Jurnal Ilmiah Informatika Global, 11(2). https://doi.org/10.36982/jiig.v11i2.1235
Crypto., A. (2024). Crypto smart money: A deep understanding on how to trade like the big players. Yogyakarta.
Gustriansyah, R., Alie, J., Sanmorino, A., Heriansyah, R., & Megat Mohamed Noor, M. N. (2022). Machine learning for clustering regencies-cities based on inflation and poverty rates in Indonesia. Indonesian Journal of Information Systems, 5(1), 64-73. https://doi.org/10.24002/ijis.v5i1.5682
Gustriansyah, R., Suhandi, N., Puspasari, S., & Sanmorino, A. (2024). Machine learning method to predict the toddlers' nutritional status. Jurnal Infotel, 16(1), 32-43. https://doi.org/10.20895/infotel.v15i4.988
Gustriansyah, R., Suhandi, N., Puspasari, S., Sanmorino, A., & Sartika, D. (2023). Toddlers' nutritional status prediction using the multinomial logistics regression method. Journal of Computer Networks, Architecture and High Performance Computing, 6(1), 25-33. https://doi.org/10.47709/cnahpc.v6i1.3372
Harlan, J. (2020). Analisis regresi logistik. In Analisis regresi logistik (pp. 39-55). Depok: Gunadarma.
Mahadhika, N., & Purwanti, N. P. (2023). Perlindungan hukum terhadap konsumen dalam pembelian aset kripto melalui transaksi elektronik di Indonesia. Jurnal Kertha Desa, 11(6), 2781-2790. https://bappebti.go.id/resources/docs/artikel_2021_02_18_lne7p27t_id.pdf
Oktofa, M. A., & Hakim, A. A. (2023). Analisis dampak penggunaan kriptocurrency terhadap pertumbuhan perekonomian di Indonesia. Jurnal Dinamika Ekonomi Syariah, 10(1), 1-12. https://doi.org/10.53429/jdes.v10i1.398
Pameka, A., Heriansyah, R., & Astuti, L. W. (2024). Optimalisasi feature selection untuk mendeteksi penyakit diabetes mellitus menggunakan metode decision tree. JUPITER: Jurnal Penelitian …, 589-599.
Pokhrel, S. (2024). No title ΕΛΕΝΗ. Αγαη, 15(1), 37-48.
Purnama, W. W. (2022). Regulasi mata uang kripto di Indonesia: Pandangan regulator dan implikasi hukum bagi ekonomi masyarakat. Jurnal Penelitian Serambi Hukum, 15(2), 96-101. https://doi.org/10.59582/sh.v15i02.922
Purnamasari, D., Bayu, A., Desy, A., Wulandari, A. P. F., Reza, A., Safrila, M., Yanda, O. N., & Hidayati, U. (2023). Pengantar metode analisis sentimen. Gunadarma Penerbit.
Raharjo, B. (2021). Pembelajaran mesin (machine learning) pembelajaran mesin. Semarang: Yayasan Prima Agus Teknik. https://www.codepolitan.com/mengenal-teknologi-machine-learning-pembelajaran-mesin
Raharjo, B. (2022). Uang masa depan: Blockchain, Bitcoin, cryptocurrencies. Semarang: Yayasan Prima Agus Teknik.
Saputra, Z., Sartika, D., & Irfani, M. H. (2024). Prediksi calon mahasiswa penerima KIP pada Universitas Indo Global Mandiri menggunakan algoritma decision tree. Jurnal Rekayasa Teknik Informatika dan Informasi, 43(3), 231-240.
Tamardina, F. A., Yasin, H., & Ispriyanti, D. (2022). Analisis sentimen review aplikasi cryptocurrency menggunakan algoritma maximum entropy dengan metode pembobotan TF, TF-IDF dan Binary. Jurnal Gaussian, 11(1), 1-10. https://doi.org/10.14710/j.gauss.v11i1.34004
Thoyyibah, T., Kurniawan, F., & Taryo, T. (2024). Dasar-dasar machine learning pada Google Colabs. Purbalingga: Eureka Media Aksara. https://doi.org/10.1016/j.earlhumdev.2006.05.022 PMid:16854537
Whitaker, T., Beranger, B., & Sisson, S. A. (2021). Logistic regression models for aggregated data. Journal of Computational and Graphical Statistics, 30(4), 1049-1067. https://doi.org/10.1080/10618600.2021.1895816
Wildan, P. D. (2022). Analisis sentimen terhadap cryptocurrency pada media sosial Twitter menggunakan metode long short-term memory (LSTM). Jurnal …
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Teknik Informatika dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




