Memprediksi Jenis Tanaman Berdasarkan Parameter Lingkungan Menggunakan Algoritma Decision Tree dan Random Forest Berbasis Web

Authors

  • Nila Aulia Universitas Bina Sarana Informatika
  • Muhammad Rizky Universitas Bina Sarana Informatika
  • Chaerul Shaleh Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.55606/jutiti.v5i3.6435

Keywords:

Crop Prediction, Decision Tree, Machine Learning, Random Forest, Web-Based System

Abstract

The advancement of information technology and artificial intelligence has created new opportunities to enhance efficiency and accuracy in the agricultural sector. One major challenge faced by farmers is determining the most suitable crop type based on environmental factors such as temperature, humidity, soil pH, rainfall, and light intensity. This study aims to develop a web-based crop prediction system using Decision Tree and Random Forest algorithms to support farmers in making data-driven decisions. The research methodology includes environmental data collection, data preprocessing, model training using both algorithms, performance evaluation based on accuracy metrics, and deployment of the best-performing model into a web application. The system allows users to input environmental parameters and obtain real-time crop predictions instantly. The novelty of this study lies in integrating both Decision Tree and Random Forest algorithms into a single interactive web platform, providing not only accurate predictions but also easy accessibility for users. Experimental results indicate that the Random Forest algorithm achieves higher accuracy than the DeciSsion Tree in crop classification. Therefore, this system can serve as an effective tool for farmers and researchers to identify suitable crops under specific environmental conditions..

Downloads

Download data is not yet available.

References

Addu, S., Sheelam, S., Mekala, S., Sulthana, N., Mekala, L., & Alsalami, Z. (2024). Assessing Environmental Impact: Machine Learning for Crop Yield Prediction. E3S Web of Conferences, 529, 3008.

Adesyahputra, M. K., & Rachmawati, E. P. (2025). Analysis of corn production in Indonesia using business intelligence technology based on Power BI. 15(1), 21–31.

Ahmad, I., Informasi, S., Teknokrat, U., & Lampung, B. (2025). Persentase Penyakit Alpukat. 5(1), 237–243.

Alhafiz, A. D., & Sela, E. I. (2025). Aplikasi Mobile Untuk Konsultasi Petani Dalam Mendukung Pertanian Digital. Jurnal Pendidikan Dan Teknologi Indonesia, 5(1), 9–14. https://doi.org/10.52436/1.jpti.453

Baishya, M., & Dutta, L. (2025). Tiny ML Based Crop Recommendation System for Precision Agriculture 5.0. Smart Agricultural Technology, 101247.

Brandt, P., Beyer, F., Borrmann, P., Möller, M., & Gerighausen, H. (2024). Ensemble learning-based crop yield estimation: a scalable approach for supporting agricultural statistics. GIScience & Remote Sensing, 61(1), 2367808.

Elbasi, E., Zaki, C., Topcu, A. E., Abdelbaki, W., Zreikat, A. I., Cina, E., Shdefat, A., & Saker, L. (2023). Crop prediction model using machine learning algorithms. Applied Sciences, 13(16), 9288.

H R, M. D., & S, S. T. (2025). International Journal of Research Publication and Reviews Employee Performance Prediction Using Machine Learning. International Journal of Research Publication and Reviews, 6(6), 8659–8661. www.ijrpr.com

Kiran, P. S., Abhinaya, G., Sruti, S., & Padhy, N. (2024). A machine learning-enabled system for crop recommendation. Engineering Proceedings, 67(1), 51.

M, M. H., Jogi, D. K., Dalavai M, A. S., Dalli, M., & M Dhanush Jogi K Adarsha Dalavai S M Manvith Dalli, M. H. (2024). A Web Based Crop Recommendation System Using Various Machine Learning Algorithms. 9(2), 160–165. www.ijnrd.org

Mancer, M., Terrissa, S. L., & Ayad, S. (2025). A Systematic Literature Review of Crop Recommendation Systems for Agriculture 4.0.

Nova Rahmawati, E., Pinandita, T., Ayu Fitriani, M., & Ambar Pambudi, E. (2025). Deteksi Penyakit Daun Tomat Real-Time pada Platform Android Berbasis Convolutional Neural Network. Jurnal Pendidikan Dan Teknologi Indonesia, 5(8), 2402–2415. https://doi.org/10.52436/1.jpti.964

Palupi, S., Gunawan, G., Kusdyawati, R., Hardi, R., & Zabrina, R. (2024). Predicting financial default risks: A machine learning approach using smartphone data. MATRIX: Jurnal Manajemen Teknologi Dan Informatika, 14(3), 107–118. https://doi.org/10.31940/matrix.v14i3.107-118

Pramana, A., Dalimunthe, E. R., Komputer, T., Teknik, F., Indonesia, U. T., Elektro, T., Teknik, F., Indonesia, U. T., Informasi, S., Teknik, F., & Indonesia, U. T. (2025). Teknologi Pemberian Nutrisi Ikan Lele dan Tanaman Kangkung pada Sistem Aquaponik Menggunakan Teknologi IoT Technology for Providing Nutrition to Catfish and Water Spinach in Aquaponic Systems Using IoT. 5(3), 813–829.

Qanith, M., & Khilar, R. (2025). Improving accuracy for recommending the appropriate crop using random forest in comparison with decision tree. AIP Conference Proceedings, 3252(1), 20001.

Reddy, D. M. S., & Neerugatti, U. R. (2023). A comparative analysis of machine learning models for crop recommendation in India. Revue d’Intelligence Artificielle, 37(4), 1081.

Senapaty, M. K., Ray, A., & Padhy, N. (2024). A decision support system for crop recommendation using machine learning classification algorithms. Agriculture, 14(8), 1256.

Shastri, S., Kumar, S., Mansotra, V., & Salgotra, R. (2025). Advancing crop recommendation system with supervised machine learning and explainable artificial intelligence. Scientific Reports, 15(1), 25498.

Soegoto, E. S., Warlina, L., Supatmi, S., Rafdhi, A. A., Jumansyah, R., & Saputra, H. (2022). SITAMPAN: Mobile application for planting and harvesting of horticultural crops in Garut Regency. MATRIX : Jurnal Manajemen Teknologi Dan Informatika, 12(3), 123–136. https://doi.org/10.31940/matrix.v12i3.123-136

Wahyudi, W., Pradana, A. I., & Permatasari, H. (2025). Implementasi Sistem Irigasi Otomatis Berbasis IoT untuk Pertanian Greenhouse. Jurnal Pendidikan Dan Teknologi Indonesia, 5(2), 435–446. https://doi.org/10.52436/1.jpti.656

Yansah, M. K., Dijaya, R., Setiawan, H., & Sumarno, S. (2025). Humanoid object detection moving in open space using YOLOv8. MATRIX: Jurnal Manajemen Teknologi Dan Informatika, 15(2), 60–71. https://doi.org/10.31940/matrix.v15i2.60-71

Yuan, J., Zhang, Y., Zheng, Z., Yao, W., Wang, W., & Guo, L. (2024). Grain crop yield prediction using machine learning based on UAV remote sensing: A systematic literature review. Drones, 8(10), 559.

Downloads

Published

2025-12-23

How to Cite

Nila Aulia, Muhammad Rizky, & Chaerul Shaleh. (2025). Memprediksi Jenis Tanaman Berdasarkan Parameter Lingkungan Menggunakan Algoritma Decision Tree dan Random Forest Berbasis Web. Jurnal Teknik Informatika Dan Teknologi Informasi, 5(3), 578–596. https://doi.org/10.55606/jutiti.v5i3.6435