Komparasi Metode Support Vector Machine dan Random Forest untuk Prediksi Penjualan Solar Industri (HSD) pada PT Heva Petroleum Energi Palembang

Authors

  • Putri Octaria Universitas Indo Global Mandiri Palembang
  • Shinta Puspasari Universitas Indo Global Mandiri Palembang
  • Evi Purnamasari Universitas Indo Global Mandiri Palembang

DOI:

https://doi.org/10.55606/jutiti.v5i2.5829

Keywords:

Industrial Diesel Fuel, Machine Learning, Prediction, Random Forest, Support Vector Machine

Abstract

The fluctuating nature of Industrial Solar or High Speed ​​Diesel (HSD) sales poses a significant challenge for companies, particularly in developing appropriate distribution strategies and stock planning. This situation demands the application of data-driven analytical methods to support more effective decision-making. This study aims to predict Industrial Solar sales at PT Heva Petroleum Energi Palembang using two Machine Learning methods, namely Support Vector Machine (SVM) and Random Forest. The data used are monthly sales records for the period 2022–2024. The research process includes data collection, pre-processing with normalization and feature selection, model building, testing by dividing the data into training and test sets, and performance evaluation using the Mean Absolute Percentage Error (MAPE) metric. The results show that the Random Forest model produces a MAPE value of 12.48%, while the Support Vector Machine model obtains a MAPE value of 12.97%. This comparison shows that Random Forest is superior in predicting sales compared to SVM. Thus, it can be concluded that Random Forest is a more appropriate choice for application in modeling Industrial Solar sales. The implications of these findings are expected to provide a real contribution to companies in developing distribution policies and stock management that are more accurate, efficient, and sustainable, so as to be able to support the stability of company operations in the future.

Downloads

Download data is not yet available.

References

Andika, R. (2024). Penerapan model exponensial dan logistik dalam prediksi populasi: Studi kasus Kota Palembang. Jurnal Informatika dan Teknik Elektro Terapan, 12(2), 853–861. https://doi.org/10.23960/jitet.v12i2.4005

Arfan, U., & Paraga, N. (2024). Perbandingan algoritma K-Means, Naïve Bayes dan Decision Tree dalam memprediksi penjualan bahan bakar minyak. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(4), 1379–1389. https://doi.org/10.57152/malcom.v4i4.1566

Cahya, D., Buani, P., Rahmawati, A., Informatika, P. S., Mandiri, U. N., Studi, P., Informasi, S., Mandiri, U. N., & Forest, R. (2024). Klasifikasi mental disorder dengan menggunakan. [Nama jurnal tidak tersedia], 9(2), 101–109.

Darmawan, A., Yudhisari, I., Anwari, A., & Makruf, M. (2023). Pola prediksi kelulusan siswa Madrasah Aliyah Swasta dengan Support Vector Machine dan Random Forest. Jurnal Minfo Polgan, 12(1), 387–400. https://doi.org/10.33395/jmp.v12i1.12388

Direktur Jenderal Minyak Gas dan Bumi KESDM. (2023). Standar dan mutu (spesifikasi) bahan bakar minyak jenis minyak solar dengan campuran biodiesel (B100) sebesar 35% (B35) dengan angka setana (CN) 48 (pp. 5–6). Situs Ditjen Migas. https://migas.esdm.go.id/cms/uploads/regulasi/regulasi-kkkl/2023/170.K.HK.02.DJM.2023.pdf

Duran, P. A., Vitianingsih, A. V., Riza, M. S., Maukar, A. L., & Wati, S. F. A. (2024). Data mining untuk prediksi penjualan menggunakan metode simple linear regression. Teknika, 13(1), 27–34. https://doi.org/10.34148/teknika.v13i1.712

Fitri, E. (2023). Analisis perbandingan metode regresi linier, Random Forest Regression dan Gradient Boosted Trees Regression method untuk prediksi harga rumah. Journal of Applied Computer Science and Technology, 4(1), 58–64. https://doi.org/10.52158/jacost.v4i1.491

Gustriansyah, R., Suhandi, N., Puspasari, S., & Sanmorino, A. (2024). Machine learning method to predict the toddlers' nutritional status. Jurnal Infotel, 16(1), 32–43. https://doi.org/10.20895/infotel.v15i4.988

Lutfi, M. (2021). Pemanfaatan limbah oli bekas menjadi bahan bakar high speed diesel (HSD). JST (Jurnal Sains Terapan), 7(1), 57–62. https://doi.org/10.32487/jst.v7i1.1121

Miftahul Jannah, Haviz, M. H., Dewi Sartika, & Evi Purnamasari. (2023). Prediksi penjualan produk pada PT Bintang Sriwijaya Palembang menggunakan K-Nearest Neighbour. Jurnal Software Engineering and Computational Intelligence, 1(2), 80–89. https://doi.org/10.36982/jseci.v1i2.3542

Purnamasari, E., Verano, D. A., Informatika, T., Indo, U., & Mandiri, G. (2025). Model data-driven untuk prediksi digitalisasi UMKM menggunakan GMM dan XGBoost. [Nama jurnal tidak tersedia], 5(2), 204–214.

Sari, L., Romadloni, A., & Listyaningrum, R. (2023). Penerapan data mining dalam analisis prediksi kanker paru menggunakan algoritma Random Forest. Infotekmesin, 14(1), 155–162. https://doi.org/10.35970/infotekmesin.v14i1.1751

Suhandi, N., Gustriansyah, R., Destria, A., Amalia, M., & Kris, V. (2024). Prediksi kualitas susu menggunakan metode K-Nearest Neighbors. [Nama jurnal tidak tersedia], 14(2), 197–208.

Wijoyo, A. A. S., Ristanti, S., Sya’ban, S., Amalia, M., & Febriansyah, R. (2024). Pembelajaran machine learning. OKTAL (Jurnal Ilmu Komputer dan Science), 3(2), 375–380. https://journal.mediapublikasi.id/index.php/oktal/article/view/2305

Yunita, R., & Kamayani, M. (2023). Perbandingan algoritma SVM dan Naïve Bayes pada analisis sentimen penghapusan kewajiban skripsi. Indonesian Journal of Computer Science, 12(5), 2879–2890. https://doi.org/10.33022/ijcs.v12i5.3415

Downloads

Published

2025-07-31

How to Cite

Octaria, P., Puspasari, S., & Purnamasari, E. (2025). Komparasi Metode Support Vector Machine dan Random Forest untuk Prediksi Penjualan Solar Industri (HSD) pada PT Heva Petroleum Energi Palembang. Jurnal Teknik Informatika Dan Teknologi Informasi, 5(2), 721–734. https://doi.org/10.55606/jutiti.v5i2.5829

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.