Komparasi Metode Support Vector Machine dan Random Forest untuk Prediksi Penjualan Solar Industri (HSD) pada PT Heva Petroleum Energi Palembang
DOI:
https://doi.org/10.55606/jutiti.v5i2.5829Keywords:
Industrial Diesel Fuel, Machine Learning, Prediction, Random Forest, Support Vector MachineAbstract
The fluctuating nature of Industrial Solar or High Speed Diesel (HSD) sales poses a significant challenge for companies, particularly in developing appropriate distribution strategies and stock planning. This situation demands the application of data-driven analytical methods to support more effective decision-making. This study aims to predict Industrial Solar sales at PT Heva Petroleum Energi Palembang using two Machine Learning methods, namely Support Vector Machine (SVM) and Random Forest. The data used are monthly sales records for the period 2022–2024. The research process includes data collection, pre-processing with normalization and feature selection, model building, testing by dividing the data into training and test sets, and performance evaluation using the Mean Absolute Percentage Error (MAPE) metric. The results show that the Random Forest model produces a MAPE value of 12.48%, while the Support Vector Machine model obtains a MAPE value of 12.97%. This comparison shows that Random Forest is superior in predicting sales compared to SVM. Thus, it can be concluded that Random Forest is a more appropriate choice for application in modeling Industrial Solar sales. The implications of these findings are expected to provide a real contribution to companies in developing distribution policies and stock management that are more accurate, efficient, and sustainable, so as to be able to support the stability of company operations in the future.
Downloads
References
Andika, R. (2024). Penerapan model exponensial dan logistik dalam prediksi populasi: Studi kasus Kota Palembang. Jurnal Informatika dan Teknik Elektro Terapan, 12(2), 853–861. https://doi.org/10.23960/jitet.v12i2.4005
Arfan, U., & Paraga, N. (2024). Perbandingan algoritma K-Means, Naïve Bayes dan Decision Tree dalam memprediksi penjualan bahan bakar minyak. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(4), 1379–1389. https://doi.org/10.57152/malcom.v4i4.1566
Cahya, D., Buani, P., Rahmawati, A., Informatika, P. S., Mandiri, U. N., Studi, P., Informasi, S., Mandiri, U. N., & Forest, R. (2024). Klasifikasi mental disorder dengan menggunakan. [Nama jurnal tidak tersedia], 9(2), 101–109.
Darmawan, A., Yudhisari, I., Anwari, A., & Makruf, M. (2023). Pola prediksi kelulusan siswa Madrasah Aliyah Swasta dengan Support Vector Machine dan Random Forest. Jurnal Minfo Polgan, 12(1), 387–400. https://doi.org/10.33395/jmp.v12i1.12388
Direktur Jenderal Minyak Gas dan Bumi KESDM. (2023). Standar dan mutu (spesifikasi) bahan bakar minyak jenis minyak solar dengan campuran biodiesel (B100) sebesar 35% (B35) dengan angka setana (CN) 48 (pp. 5–6). Situs Ditjen Migas. https://migas.esdm.go.id/cms/uploads/regulasi/regulasi-kkkl/2023/170.K.HK.02.DJM.2023.pdf
Duran, P. A., Vitianingsih, A. V., Riza, M. S., Maukar, A. L., & Wati, S. F. A. (2024). Data mining untuk prediksi penjualan menggunakan metode simple linear regression. Teknika, 13(1), 27–34. https://doi.org/10.34148/teknika.v13i1.712
Fitri, E. (2023). Analisis perbandingan metode regresi linier, Random Forest Regression dan Gradient Boosted Trees Regression method untuk prediksi harga rumah. Journal of Applied Computer Science and Technology, 4(1), 58–64. https://doi.org/10.52158/jacost.v4i1.491
Gustriansyah, R., Suhandi, N., Puspasari, S., & Sanmorino, A. (2024). Machine learning method to predict the toddlers' nutritional status. Jurnal Infotel, 16(1), 32–43. https://doi.org/10.20895/infotel.v15i4.988
Lutfi, M. (2021). Pemanfaatan limbah oli bekas menjadi bahan bakar high speed diesel (HSD). JST (Jurnal Sains Terapan), 7(1), 57–62. https://doi.org/10.32487/jst.v7i1.1121
Miftahul Jannah, Haviz, M. H., Dewi Sartika, & Evi Purnamasari. (2023). Prediksi penjualan produk pada PT Bintang Sriwijaya Palembang menggunakan K-Nearest Neighbour. Jurnal Software Engineering and Computational Intelligence, 1(2), 80–89. https://doi.org/10.36982/jseci.v1i2.3542
Purnamasari, E., Verano, D. A., Informatika, T., Indo, U., & Mandiri, G. (2025). Model data-driven untuk prediksi digitalisasi UMKM menggunakan GMM dan XGBoost. [Nama jurnal tidak tersedia], 5(2), 204–214.
Sari, L., Romadloni, A., & Listyaningrum, R. (2023). Penerapan data mining dalam analisis prediksi kanker paru menggunakan algoritma Random Forest. Infotekmesin, 14(1), 155–162. https://doi.org/10.35970/infotekmesin.v14i1.1751
Suhandi, N., Gustriansyah, R., Destria, A., Amalia, M., & Kris, V. (2024). Prediksi kualitas susu menggunakan metode K-Nearest Neighbors. [Nama jurnal tidak tersedia], 14(2), 197–208.
Wijoyo, A. A. S., Ristanti, S., Sya’ban, S., Amalia, M., & Febriansyah, R. (2024). Pembelajaran machine learning. OKTAL (Jurnal Ilmu Komputer dan Science), 3(2), 375–380. https://journal.mediapublikasi.id/index.php/oktal/article/view/2305
Yunita, R., & Kamayani, M. (2023). Perbandingan algoritma SVM dan Naïve Bayes pada analisis sentimen penghapusan kewajiban skripsi. Indonesian Journal of Computer Science, 12(5), 2879–2890. https://doi.org/10.33022/ijcs.v12i5.3415
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Teknik Informatika dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




