Klasifikasi Wajah untuk Rekomendasi Gaya Rambut Menggunakan SVM dan Random Forest

Authors

  • Mochamad Rizky Ainur Ridho Universitas BIna Sarana Informatika
  • Mahatma Mahesa Universitas Bina Sarana Informatika
  • Bagus Adi Wibowo Universitas BIna Sarana Informatika
  • Rachmat Adi Purnama Universitas BIna Sarana Informatika
  • Veti Apriana Universitas BIna Sarana Informatika
  • Rame Santoso Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.55606/jutiti.v5i3.6360

Keywords:

Face Shape Classification, Hairstyle Recommendation, HOG, Random Forest, SVM

Abstract

The goal this project is to create a face-shape classification and hairstyle recommendation system by combining Support Vector Machine (SVM) and Random Forest (RF) algorithms with Histogram of Oriented Gradients (HOG) feature extraction. This study is motivated by the growing demand for individualized appearance support, as many users find it difficult to find haircuts that complement their face features. The method first preprocesses facial photos, uses HOG to extract key geometric and texture-based features, and then uses SVM and RF models to categorize the images. For training, validation, and testing, a dataset of five different face shapes is utilized. According to experimental results, the Random Forest model has an accuracy of about 89%, while the SVM model achieves an accuracy of about 95%. These findings suggest that SVM is better suited for managing high-dimensional feature spaces generated by HOG extraction. A recommendation system that offers hairstyle recommendations based on the anticipated face shape is then integrated with the trained model. The system is useful for real-time use since it can process pictures taken with the camera or uploaded from the gallery. Overall, this study shows that integrating HOG with SVM offers a dependable basis for creating customized hairdo recommendations as well as an efficient method for face-shape classification.

 

Downloads

Download data is not yet available.

References

Adriansyah, I., Mahendra, M. D., Rasywir, E., & Pratama, Y. (2022). Perbandingan metode random forest classifier dan SVM pada klasifikasi kemampuan level beradaptasi pembelajaran jarak jauh siswa. Bulletin of Informatics and Data Science, 1(2), 98–103. https://doi.org/10.61944/bids.v1i2.49

Antono, F. B., Rofii, F., & Istiadi. (2020). Deteksi jumlah dan pengenalan wajah manusia menggunakan metode histogram of oriented gradient dan Viola–Jones. Techno.COM, 19(1), 12–23. https://doi.org/10.33633/tc.v19i1.2626

Azzahra, M. S., Maesaroh, S. S., & Guntara, R. G. (2024). Penggunaan convolutional neural network dan transfer learning untuk rekomendasi gaya rambut pria. Jurnal Algoritma, 21(2), 173–183. https://doi.org/10.33364/algoritma/v.21-2.2134

Barus, A. C., Panggabean, T. M., Pakpahan, D., & Sirait, S. G. D. (2022). Verifikasi kualitas gambar dengan algoritma support vector machine (SVM) untuk studi kasus ulos Batak Toba. Smart Comp, 11(3), 473–483. https://doi.org/10.30591/smartcomp.v11i3.3900

Bintoro, P., Ratnasari, & Widiandana, P. (2023). Penerapan principal component analysis dan random forest untuk pengenalan ekspresi wajah. J-Rapa (Jurnal Rekayasa Perangkat Lunak), 2(1), 9–14.

Fakhira, N. N., Maulina, A., & Nurjannah, T. (2025). Pengaruh pemilihan gaya pangkas rambut untuk rambut keriting pria. Journal Beauty and Cosmetology (JBC), 6(2), 22–34.

Fatimah, N. S., & Agustin, S. (2025). Klasifikasi citra batik menggunakan local binary pattern (LBP) dan support vector machine (SVM). Jurnal Algoritma, 22(1), 185–196. https://doi.org/10.33364/algoritma/v.22-1.2208

Florestiyanto, M. Y., Pratomo, A. H., & Sari, N. I. (2020). Penguatan ketepatan pengenalan wajah Viola–Jones dengan pelacakan. Teknika, 9(1), 31–37. https://doi.org/10.34148/teknika.v9i1.241

Indra, D., Hayati, L. N., Daris, M. A., As’ad, I., & Mansyur, U. (2024). Penerapan metode random forest dalam klasifikasi huruf BISINDO dengan menggunakan ekstraksi fitur warna dan bentuk. Komputika: Jurnal Sistem Komputer, 13(1), 29–40. https://doi.org/10.34010/komputika.v13i1.10363

Iriawan, M. S., Rahmawati, M. S., & Faroek, D. A. (2022). Rancang bangun aplikasi rekomendasi model rambut pria berbasis Android. Framework, 1(1), 11–23.

Kandasamy, L., Abirami, Shandy, N. R., & Barani, D. (2025). Revolutionizing emotional intelligence assessment in the modern workplace: Integrating signal and image fusion with CatBoost. TPM, 32(S4), 558–575.

Khaliqah, M., Sarifah, L., & Khotijah, S. (2024). Implementasi algoritma k-nearest neighbor (K-NN) dalam mengklasifikasikan berbagai jenis ekspresi wajah manusia. Zeta – Math Journal, 9(1), 10–20. https://doi.org/10.31102/zeta.2024.9.1.10-20

Kurniati, F. T., & Pramana, D. (2023). Identifikasi objek menggunakan random forest dan multi-fitur. Jurnal Sistem dan Informatika (JSI), 17(2), 130–136. https://doi.org/10.30864/jsi.v17i2.590

Mulyana, D. I., & Edi. (2023). Penerapan face recognition dengan algoritma Viola–Jones dalam sistem presensi kehadiran siswa dan guru pada Sekolah IDN Boarding School Jonggol. Jurnal Indonesia: Manajemen Informatika dan Komunikasi, 4(3), 1749–1757. https://doi.org/10.35870/jimik.v4i3.398

Naufal, M. F., Arifin, T., & Wirjawan, H. (2023). Analisis perbandingan tingkat performa algoritma SVM, random forest, dan naïve Bayes untuk klasifikasi cyberbullying pada media sosial. Jurnal Riset Sistem Informasi dan Teknik Informatika (JURASIK), 8(1), 82–90.

Novianto, E., Suhirman, & Prasetyo, D. (2024). Perbandingan metode klasifikasi random forest dan support vector machine dalam memprediksi capaian studi mahasiswa. JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 9(4), 1821–1833. https://doi.org/10.29100/jipi.v9i4.5423

Omar, J., Shabrina, N. H., Bhakti, A. N., & Patria, A. (2021). Emotion recognition using convolutional neural network on virtual meeting image. Ultima Computing: Jurnal Sistem Komputer, 13(1), 30–38. https://doi.org/10.31937/sk.v13i1.2108

Putra, M. Y. (2024). Rancang bangun deteksi bentuk wajah untuk menentukan gaya rambut menggunakan algoritma CNN. Repeater: Publikasi Teknik Informatika dan Jaringan, 2(3), 206–212. https://doi.org/10.62951/repeater.v2i3.139

Suryani, & Mustakim. (2022). Estimasi keberhasilan siswa dalam pemodelan data berbasis learning menggunakan algoritma support vector machine. Bulletin of Informatics and Data Science, 1(2), 81–88. https://doi.org/10.61944/bids.v1i2.36

Susanti, L., Daulay, N. K., & Intan, B. (2023). Sistem absensi mahasiswa berbasis pengenalan wajah menggunakan algoritma YOLOv5. JURIKOM (Jurnal Riset Komputer), 10(2), 640–647. https://doi.org/10.30865/jurikom.v10i2.6032

Ulhaq, A. D., & Nuryana, I. K. D. (2025). Sistem rekomendasi gaya rambut personal berdasarkan analisis wajah dan rambut. JINACS (Journal of Informatics and Computer Science), 7(1), 340–347.

Downloads

Published

2025-12-17

How to Cite

Mochamad Rizky Ainur Ridho, Mahatma Mahesa, Bagus Adi Wibowo, Rachmat Adi Purnama, Veti Apriana, & Rame Santoso. (2025). Klasifikasi Wajah untuk Rekomendasi Gaya Rambut Menggunakan SVM dan Random Forest. Jurnal Teknik Informatika Dan Teknologi Informasi, 5(3), 526–540. https://doi.org/10.55606/jutiti.v5i3.6360

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.