Sistem Deteksi Penyakit pada Tanaman Cabai Menggunakan RT-DETR dan YOLLOv8

Authors

  • Pedro Lucio Parera Universitas Bina Sarana Informatika
  • Gregorius Bayu Listyoputro Universitas Bina Sarana Informatika
  • Krisnavaro Raihananta Universitas Bina Sarana Informatika
  • Rachmat Adi purnama Universitas Bina Sarana Informatika
  • Rame Santoso Universitas Bina Sarana Informatika
  • Veti Apriana Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.55606/jutiti.v5i3.6373

Keywords:

Chili Disease Detection, Deep Learning, RT-DETR, Streamlit, YOLOv8

Abstract

This study investigates the performance of two state-of-the-art object detection models, YOLOv8 and RT-DETR, in identifying diseases in chili plants, which represent a major challenge affecting horticultural productivity. Diseases such as anthracnose and Cercospora leaf spot often cause significant yield losses, and traditional manual identification tends to be inefficient, subjective, and error-prone due to the visual similarities found among disease symptoms. The objective of this research is to evaluate and compare the capabilities of both models using the Chili dataset from Roboflow Universe consisting of four classes: Anthracnose, Cercospora Leaf Spot, Healthy Fruit, and Healthy Leaf. The methodology includes data preprocessing, training using identical hyperparameters, and performance evaluation through accuracy and model behavior analysis during real-world testing. The findings indicate that RT-DETR achieves higher accuracy in controlled testing, reaching 90% for Anthracnose, 95% for Healthy Leaf, 100% for Healthy Fruit, and 85% for Cercospora Leaf Spot, supported by its transformer-based architecture that enhances spatial understanding. However, YOLOv8 demonstrates superior stability and consistency in real-world scenarios involving varying lighting, leaf orientations, and natural texture variations. The model also produces fewer misclassification errors, making it more reliable for practical field deployment. The implications of these results show that YOLOv8 is the most suitable model for integration into a Streamlit-based application due to its fast, responsive, and accurate inference, supporting early disease detection for chili farmers.

Downloads

Download data is not yet available.

References

Aboelenin, S., Alghamdi, T., Alzahrani, A., & Alshamrani, H. (2025). A hybrid deep-learning framework combining CNNs and Vision Transformers for plant leaf disease detection. Soft Computing. https://doi.org/10.1007/s40747-024-01764-x

Aningtiyas, A., & others. (2020). Deteksi objek menggunakan algoritma deep learning. Jurnal Teknologi Informasi Dan Komunikasi, 8(2), 45–52.

Arya, W. K., Setiawan, I., & Praseptiangga, D. (2021). Deep learning dan aplikasinya dalam berbagai bidang. N/A.

Baihaqi, A., Prasetyo, Y., & Rahman, A. (2021). Evaluation of classification accuracy using confusion matrix in machine learning. Journal of Machine Learning and Soft Computing, 3(2), 45–52.

Barman, U., Dey, N., & Temel, S. (2024). Vision transformer-based smartphone application for plant disease identification. Agronomy, 14(2), 327. https://doi.org/10.3390/agronomy14020327

Damayanti, R., & others. (2024). Pemanfaatan kecerdasan buatan sebagai asisten pembelajaran. N/A.

Daqiqil, I. (2021). Machine learning dan implementasinya. N/A.

Derit Junio, R., & Putra, A. (2025). Evaluasi performa model deteksi objek pada citra daun tanaman. Jurnal Pertanian Dan Informatika, 11(1), 45–56.

Fatkhin, A., & Fadjeri, R. (2024). Penerapan algoritma YOLO untuk deteksi objek real-time. Jurnal Teknologi Informasi Dan Sains, 12(1), 45–53.

Ghafar, A., Arcaklı, B., & Khan, M. A. (2024). Visualization of plant disease distribution and evaluation of YOLOv8 for plant disease detection. Pathogens, 13(12), 1032. https://doi.org/10.3390/pathogens13121032

Huang, X., Li, J., & Zhao, Q. (2023). YOLOv8-based plant leaf disease detection. Sensors, 23(18), 5671.

Ikasari, F., & others. (2024). Penggunaan metrik accuracy, precision, recall, dan F1-score dalam deteksi objek dan klasifikasi citra. Jurnal Teknologi Informasi Pertanian, 9(2), 77–88.

Iman, M., Setiawan, D., & Rahmawati, L. (2025). Analisis performa YOLOv8 pada sistem deteksi objek modern. Jurnal Sains Komputer, 9(2), 101–112.

Intel. (2025). Penerapan teknologi computer vision.

Khan, A., Rafiq, M., & Ullah, S. (2024). Comparative study of YOLOv8 and RT-DETR for agricultural disease detection. Computers and Electronics in Agriculture, 218, 108880.

Khoiriyah, S. (2023). Penerapan DETR pada sistem deteksi objek berbasis transformer. Jurnal Informatika Cerdas, 7(3), 87–96.

Leite, D. V., Oliveira, A. D., & Silva, J. M. (2025). Deep learning models for detection and severity quantification of Cercospora leaf spot in chili peppers. Plants, 14(13), 2011. https://doi.org/10.3390/plants14132011

Lye, H. Z. M., Rahman, N. N. N. A., & Chua, E. W. (2023). Processing plant diseases using vision transformer models. Journal of Imaging and Vision. https://joiv.org/index.php/joiv/article/view/2291

Roboflow. (2024). Chili plant disease dataset. https://universe.roboflow.com

Suryadi, H., & Putra, R. (2022). Budidaya cabai dan penanganan hama penyakit. Pustaka Pertanian.

Uzair, M., Rehman, H., & Tariq, S. (2024). Real-time detection of plant diseases using YOLOv8. Journal of Agricultural Informatics, 15(1), 45–60.

Wang, C., Li, Y., & Zhu, X. (2023). RT-DETR: Real-time detection transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(12), 14523–14537.

Downloads

Published

2025-12-16

How to Cite

Pedro Lucio Parera, Gregorius Bayu Listyoputro, Krisnavaro Raihananta, Rachmat Adi purnama, Rame Santoso, & Veti Apriana. (2025). Sistem Deteksi Penyakit pada Tanaman Cabai Menggunakan RT-DETR dan YOLLOv8 . Jurnal Teknik Informatika Dan Teknologi Informasi, 5(3), 499–519. https://doi.org/10.55606/jutiti.v5i3.6373

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.